Glycoprotein NMB (gpNMB) Overexpression is Prevalent in Human Cancers: Pancreatic Cancer, Non-Small Cell Lung Cancer, Head and Neck Cancer, and Osteosarcoma

Abdel Halim, Rebecca G. Bagley, Tibor Keler

Catalyst Therapeutics, Inc., Hampstead, MA

American Association for Cancer Research Annual Meeting
April 16-20, 2016 New Orleans, LA
Abstract #5032

INTRODUCTION

Glycoprotein NMB (gpNMB) is an internalizable transmembrane protein overexpressed in 20% of breast cancers, 40% of triple-negative breast cancer (TNBC), and > 80% of melanomas. Glumetuzumab vedotin (GV, CDX-011) is an antibody-drug conjugate (ADC) that delivers the potent cytotoxin monomethyl auristatin E to cancer cells expressing gpNMB. GV is in Phase II clinical trials for TNBC (the pivotal “METRIC” study; NCT01997333) and melanoma (NCT02302339).

We investigated the prevalence of gpNMB overexpression in other human cancers to explore the potential for therapeutic benefit of GV in patients with TNBC and melanoma.

MATERIALS & METHODS

An immunohistochemistry (IHC) assay was developed and validated (Mosaic Laboratories, Lake Forest, CA) using the following setup:

- Antibody: R&D goat polyclonal antibody
- Detection system: Rabbit Anti-Goat (Vector Laboratories) + PowerVision Poly AP Anti-Rabbit IgG (Leica)
- Counterstain: Hematoxylin (Dako)
- Autostainer: DAKO
- Antibody: R&D goat polyclonal antibody
- PowerVision Poly AP Anti-Rabbit IgG (Leica)
- Counterstain: Hematoxylin (Dako)

For osteosarcomas, tissue sections were decalcified using Immunocal

In addition to optimization of antigen retrieval & binding conditions, the following setup was used:

- Pathologist-to-pathologist score difference in total stained cells
- The same samples were stained and scored on 6 separate runs and the average inter-run CV was 3.3% for % stained cells and 8.9% for H-Score.
- As shown by the following images, gpNMB but not Ki67 staining was ablated with the peptide which proved the concept.

RESULTS

A peptide blocking study was performed to demonstrate specificity of the antibody binding for the target gpNMB by using a gpNMB peptide at excess molar ratio to block the binding.

SPECIFICITY OF STAINING

- 1 NSCLC SCC tissue and 2 cell lines (Hela and SK-MEL-29) were stained without (images 1A-3A) and with (1A-3A) the blocking peptide.
- To ensure that lack of staining was due to specific reaction, split slides were stained for Ki67 without (1B-3B) and with (1B-3B) the gpNMB peptide.

PRECISION

- An intra-run precision was tested using 4 samples (testis control, HT-1080 cell line, and 2 positive NSCLC) in 3 runs and the average inter-run CV was 3.3% for % stained cells and 8.9% for H-Score.
- The same samples were stained and scored on 6 separate runs and the average inter-run CV was 3.3% for % stained cells and 8.9% for H-Score.
- Pathologist-to-pathologist score difference in total stained cells and H-score was < 25% in 93.3% (80/85) of samples where the remaining 12% samples were within 30-50%.

ASSAY DEVELOPMENT & VALIDATION PARAMETERS

In addition to optimization of antigen retrieval & binding conditions and establishment of the optimal antibody dilution using human tissues and cell lines, the following parameters were addressed:

- Selectivity of binding
- Precision: Intra- and inter-run reproducibility
- Inter-pathologist review variability

Following assay validation, target prevalence was studied in multiple cancer types and corresponding normal (non-malignant) tissues. Data shown represents expression in tumor epithelial cells.

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>% Positive Cells</th>
<th>Normal (n=20) Cancer (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal (n=21) Cancer (n=22)</td>
<td>Normal (n=20) Cancer (n=20)</td>
</tr>
<tr>
<td>Lung</td>
<td>5% 3+, 10% 2+, 5% 1+</td>
<td>5% 3+, 10% 2+, 5% 1+</td>
</tr>
<tr>
<td>Head & Neck</td>
<td>20% 3+, 70% 2+</td>
<td>20% 3+, 70% 2+</td>
</tr>
<tr>
<td>Pancreas</td>
<td>50% 1+, 50% 2+</td>
<td>50% 1+, 50% 2+</td>
</tr>
<tr>
<td>Bone</td>
<td>25% 1+, 75% 2+</td>
<td>25% 1+, 75% 2+</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>40% 3+, 60% 2+</td>
<td>40% 3+, 60% 2+</td>
</tr>
<tr>
<td>Head & Neck</td>
<td>10% 3+, 25% 2+, 55% 1+</td>
<td>10% 3+, 25% 2+, 55% 1+</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>25% 1+, 75% 2+</td>
<td>25% 1+, 75% 2+</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- The gpNMB IHC assay is validated for use in clinical trials for patients with breast cancer, melanoma, lung, pancreatic, head and neck cancer, or osteosarcoma.
- Over-expression of gpNMB in human pancreatic, lung, H&N cancers and osteosarcoma samples suggests that these indications are appropriate for evaluating the clinical activity of glumetuzumab vedotin.
- In addition to TNBC and melanoma, studies have been initiated in osteosarcoma and uveal melanoma; a study is planned in SCC of the lung.
- If early phase clinical trials show a predictive value in these new indications, then the IHC test can be used as a companion diagnostics for further development.