FLT3 Ligand (CDX-301) and Stereotactic Radiotherapy for Advanced Non-Small Cell Lung Cancer

Nitin Ohri¹, Balazs Halmos¹, Haiying Cheng¹, Tony Abraham¹, Tahir Yahya¹, Madhur Garg¹, William Bodner¹, Rafi Kabarriti¹, Shalom Kalnicki¹, Michael J. Yellin², Tibor Keler², Chandan Guha¹.

¹Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
²Celldex Therapeutics, Inc, Hampton, NJ

Funding from SBIR Grant: 5R44CA192435-03
Disclosures

• N. Ohri: None
• B. Halmos: None
• H. Cheng: None
• T. Abraham: None
• T. Yahya: None
• M. Garg: None

• W. Bodner: None
• R. Kabarriti: None
• S. Kalnicki: None
• M.J. Yellin and Tibor Keler:
 Employees of Celldex Therapeutics, Inc.
• C. Guha: None

Funding from SBIR Grant: 5R44CA192435-03
Established 3-week-old Lewis lung tumors

RT: 60 Gy to primary tumor

FLT3L: 500 μg/kg/day × 10 days, initiated one day after RT

Combined treatment
- induced primary and memory tumor-specific immune response
- prevented lung metastasis
- prolonged survival
Fractionated Radiotherapy with 3 x 8 Gy Induces Systemic Anti-Tumour Responses and Abscopal Tumour Inhibition without Modulating the Humoral Anti-Tumour Response

Sub-ablative radiation with FLT3L did not improve survival.

CDX-301 (FLT3 ligand) Background

• Fms-like tyrosine kinase-3 ligand (FLT3L) uniquely binds CD135 (FLT3 receptor) and induces proliferation, differentiation, and mobilization of hematopoietic stem cells, early progenitor cells, and dendritic cells (DCs)
 • Key regulator of DCs inducing marked increases in both myeloid and plasmacytoid DCs

• CDX-301 is the soluble recombinant human protein form of FLT3L.

• Clinical experience (studies by Immunex and Celldex)
 • >500 subjects treated, including >300 cancer patients
 • No significant safety issues
 • 10 to 100+ fold increase in DCs (including CD141+ DCs)
 • Augments humoral and T cell response to NY-ESO-1 vaccine
 • No clear activity as monotherapy in advanced cancer patients
Study Hypothesis

• The combination of stereotactic body radiotherapy (SBRT) to a single pulmonary lesion and CDX-301 will have clinical activity in advanced NSCLC.

Immunogenic cell death: Promotes DC activation and maturation

Expansion of DCs in tissues and tumor

Response in irradiated and non-irradiated lesions

Systemic immune response
Key Eligibility Criteria

• AJCC stage 3 or 4 histologically proven NSCLC not amenable to curative therapy
• Prior treatment with at least one standard chemotherapy regimen or targeted agent prior to enrollment
• Measurable disease that includes:
 • at least one pulmonary lesion ≥ 1 cm in greatest dimension that would be amenable to SBRT
 • at least one measurable lesion that would be outside of the SBRT treatment fields
• ECOG performance status 0-2
• No untreated central nervous system metastases.
• No ongoing or recent use of high dose oral corticosteroids.
• No history of allogeneic organ transplant or autoimmune disease.
Study Design

- One-week treatment course:
 - 5 daily subcutaneous injections of CDX-301 (75 μg/kg)
 - Stereotactic body radiotherapy (SBRT) to a single thoracic lesion
 - Peripheral tumor ≤ 2 cm and > 1 cm from chest wall
 - Peripheral tumor ≤ 5 cm and not eligible for 34 Gy x 1
 - Other thoracic lesions
 - 34 Gy x 1 fraction = 34 Gy
 - 18 Gy x 3 fractions = 54 Gy
 - 10 Gy x 5 fractions = 50 Gy

- Sample size: 29 patients

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Pre-tx</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Weeks 16, 24, 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereotactic Radiotherapy (SBRT)</td>
<td>XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDX-301</td>
<td>XXXXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History and Physical Examination</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CBC, CMP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Whole body PET/CT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Immune Correlates</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

No additional treatment until disease progression
Endpoints

• Primary endpoint: Progression-free survival 4 months after treatment initiation (PFS4)
 • Scored using Immune-related response criteria (irRC)1
 • H\textsubscript{0}: PFS4 \leq 20\%2,3 H\textsubscript{1}: PFS4 \geq 40.5\%
 • Accept H\textsubscript{1} if PFS4 is achieved in 10/29 subjects

• Secondary endpoints:
 • Adverse events / Dose-limiting toxicities
 • Overall Survival
 • Radiographic responses in lesions not treated with SBRT
 • CT: irRC1
 • PET: PERCIST4
 • Total Glycolytic Activity (TGA): volumetric sum of activity in all hypermetabolic lesions
 • Partial Metabolic Response (PMR): Decrease in TGA of at least 45%

1 - Clin Cancer Res 2009;15(23):7412-20 2 - J Clin Oncol 2010;28(13):2167
Patient Characteristics (n=9)

- 9 subjects enrolled between October 2016 and September 2017
- 7/9 previously treated with anti-PD-(L)1 therapy
 - 5 with documented progression on anti-PD-(L)1 therapy
 - Median interval from anti-PD-(L)1 therapy termination to study enrollment: 3 months

<table>
<thead>
<tr>
<th>Gender, n</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>4</td>
</tr>
<tr>
<td>Female</td>
<td>5</td>
</tr>
<tr>
<td>Age, mean (range)</td>
<td>70 (54-81)</td>
</tr>
<tr>
<td>ECOG Performance Status, n</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Histology, n</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>6</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>Mixed</td>
<td>1</td>
</tr>
<tr>
<td>PD-L1 expression</td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>4</td>
</tr>
<tr>
<td>60%</td>
<td>1</td>
</tr>
<tr>
<td>75%</td>
<td>1</td>
</tr>
<tr>
<td>unknown</td>
<td>3</td>
</tr>
<tr>
<td>Previous lines of systemic therapy for advanced NSCLC, n</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Prior anti-PD-(L)1 therapy, n</td>
<td>7</td>
</tr>
<tr>
<td>SBRT schedule, n</td>
<td></td>
</tr>
<tr>
<td>1 fraction</td>
<td>1</td>
</tr>
<tr>
<td>3 fractions</td>
<td>1</td>
</tr>
<tr>
<td>5 fractions</td>
<td>7</td>
</tr>
</tbody>
</table>
Adverse Events
Possibly/probably related to study therapy, scored using CTCAE v 4.0

<table>
<thead>
<tr>
<th></th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Esophagitis</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

• No dose-limiting toxicities observed
• One case of delayed pneumonitis attributed to prior immune checkpoint inhibitor therapy
CDX-301 Increases DCs and Monocytes
Clinical Outcomes (n=9)

- PFS4 achieved in 5 subjects (based on CT/irRC)
- 6 subjects currently alive with disease
- 10 month median follow-up duration for surviving patients
Best Responses (excluding SBRT target): CT/irRC v. PET/PERCIST

<table>
<thead>
<tr>
<th>Response Type</th>
<th>CT/irRC</th>
<th>PET/PERCIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Response</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Progressive Disease</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Kappa = 0.481
Weighted Kappa = 0.667
(moderate to good agreement)
Responses on PET (excluding SBRT Targets)

• 9 subjects
 • 5 demonstrated Partial Metabolic Response on Week 8 PET
Responses on PET (excluding SBRT Targets)

- 9 subjects
 - 5 demonstrated Partial Metabolic Response on Week 8 PET
 - All 5 previously received immunotherapy

- No Prior Immunotherapy
 - 9 subjects
 - 5 demonstrated Partial Metabolic Response on Week 8 PET
 - All 5 previously received immunotherapy

- Prior Immunotherapy
 - 4 subjects
 - 3 demonstrated PD
 - (3 fx)
 - 1 demonstrated PMR
 - (1 fx)
Patient 2

- 55 year-old female with right lung adenocarcinoma, left lung nodules
 - 1st line: carboplatin, pemetrexed (PD)
 - 2nd line: nivolumab (arthralgias), discontinued June 2016
- Nov 2016: SBRT + CDX-301
Patient 2

- 55 year-old female with right lung adenocarcinoma, left lung nodules
 - 1st line: carboplatin, pemetrexed (PD)
 - 2nd line: nivolumab (arthralgias), discontinued June 2016
 - Nov 2016: SBRT + CDX-301
 - May 2017: PD in left lung
 - April 2018: clinically well without additional treatment
Patient 3

- 80 year-old female with right lung squamous cell carcinoma, bone metastases
 - 1st line: carboplatin, gemcitabine (SD, then PD)
 - 2nd line: nivolumab (PR, then PD), discontinued Dec 2016
- Feb 2017: SBRT + CDX-301
Patient 3

- 80 year-old female with right lung squamous cell carcinoma, bone metastases
 - 1st line: carboplatin, gemcitabine (SD, then PD)
 - 2nd line: nivolumab (PR, then PD), discontinued Dec 2016
 - Feb 2017: SBRT + CDX-301
 - Feb 2018: PD in right lung
 - April 2018: On pembrolizumab
Response on Week 8 PET and Overall Survival

![Graph showing overall survival over time from study treatment].

- Partial Metabolic Response, n=5
- No Partial Metabolic Response, n=4
Study Conclusions

• This “bench to bedside” trial explores the combination of ablative radiotherapy and FLT3L as an *in situ* vaccine.

• The combination of SBRT and CDX-301 is well tolerated in patients with advanced NSCLC.

• SBRT + CDX-301 has clinical activity ("abscopal effects") in advanced NSCLC
 - rapid and durable responses
Study Conclusions (cont.)

- SBRT + CDX-301 may be particularly effective in patients who have previously received anti-PD(L)1 therapy.
 - Including patients who have progressed
- Early PET findings after treatment may predict long-term clinical outcomes.
- Enrollment to further characterize the safety and efficacy of this regimen is ongoing.
Future Directions

• Optimize treatment regimen
 • Add “Booster” doses of SBRT + CDX-301
 • Add activating anti-CD40 antibody
 • CDX-1140, currently in phase I trials

• Explore combinations with immune checkpoint inhibitors
 • anti-PD(L)1 → SBRT+CDX-301 → anti-PD(L)1

http://dendritic-cells-research.com
Guha Laboratory